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Abs tract

The parametric instability growth rate of ion acoustic and Langmuir

waves, driven unstable by two uniform pumps near the Bohm-Gross frequency, is

calculated as a function of pump amplitudes and frequencies. Two instability

mechanisms can be identified: one corresponds to the usual, single pump

parametric instabilities (decay and oscillating two stream) while the other

is similar to that found in the Mathieu equation. The interaction between

these two mechanisms results in a non-monotonic dependence of the growth rate

on the pump amplitudes and frequencies: both cancellation and enhancement are

obtained for various values of the parameters. An analytic study of the

relevant dispersion relation using Hill's method is complemented by numerical

studies in both the frequency and time domains.

-
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1. INTRODUCTION

The growth rates of Langmuir and ion acoustic waves driven unstable by a

high frequency uniform electric field Eo(t) = Elcoswit + E2cosw 2t in a uniform

unmagnetized plasma are calculated for "pump" frequencies wI and w 2 close to

the Bohm-Gross frequency wk = (Wp2 + 3Tek 2 /M) 1/2, with the difference fre-

quency A = wI - w 2 being of order of the ion acoustic frequency Qk = kcs .

While earlier work on this problem considered the threshold for instability,

i.e. the minimum value of (E1
2 + E2

2 ) required to amplify a noise signal, we

examine here the growth rate as a function of w1, w2, El and E2 . Experimental

observations on both experimental and ionospheric plasmas 2 have shown a com-

plicated dependence of the wave amplitudes on pump frequencies. Although most

steady-state experiments sample the nonlinearly saturated state of the insta-

bility, it is important to determine the properties of the early linear growth

stage. The present work addresses this question and, in addition to providing

the necessary conceptual framework for a future nonlinear saturation theory,

predicts various nontrivial features which may be useful in understanding the

experimental observations. Since most experiments operate well above the

threshold levels, the damping of both Langmuir and ion-acoustic waves is

neglected here; it then suffices to use the warm fluid theory rather than a

kinetic theory model. The calculations can be extended to include damping

terms but at the expense of introducing more parameters.

The characteristics of the usual single pump parametric excitation are

well known. When the frequency matching condition wi - wk = Slk, is satisfied

there is a "decay instability", consisting of the decay of the pump wave at wl

into a Langmulr wave and an ion acoustic wave, both having wavenumber k. For

any finite pump amplitude El there is a range of wl around wk + fk for which



the growth rate y of the daughter waves is positive. Fuivalently, for given

wl in that range, there is a threshold for E l. Of course, when the frequency

matching condition wl = wk + Qk is satisfied exactly, the threshold drops to

zero, when damping is neglected. When wl = wk, the so-called oscillating

two-stream instability (OTSI) occurs, but here we shall discuss primarily the

decay instability. All of these properties are immediate consequences of the

fourth order differential equation which governs the time evolution of the

spatial Fourier transform of the ion density ni(k, t). Since the coefficients

of this equation are constants, its Laplace transform yields a simple disper-

sion equation, a quadratic in w2 , whose solution gives the results stated.

previously.

With two pumps, the coefficients in the differential equation for ni are

not constant. Instead, they become periodic functions of t, with frequency

A = wi - w2 , resulting in a differential equation which resembles the well-

known Mathieu equation, albeit of higher order. Physically, this Mathieu-like

character arises from the ponderomotive force at the beat frequency A driving

the ion acoustic waves. As might be expected, the solutions of this equation

3,14
have properties analogous to those of the Mathieu equation. Since the Laplace

transform of this equation leads to an infinite set of coupled equations for

the quantities ni(k, w ± LA), where X is an integer, the dispersion relation

takes the form of the vanishing of an infinite determinant, an equation which

we solve for w using Hill's method.
4

The behavior of the resulting solutions can be described in terms of two

separate instability mechanisms, one similar to the usual single pump paramet-

ric instability, the other analogous to that found in the Mathieu equation.

Specifically, if wl is near wk + fk, if E1 exceeds the single pump threshold

Es and if E2 is of order El, we recover the usual decay instability, except

for certain values of w 2, where the growth rate y vanishes or is slightly
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enhanced. This is illustrated in Fig. 4 where the real and imaginary parts

of w for the growing wave are plotted as a function of w2 for fixed wl and

E l = E2. In the figures, and in subsequent sections, we use the dimensionless

quantities va - (wa-wi)/ik and g. = (eEa/Te)(kkD)- 12(M/16m) 14 to characterize

the pump frequencies and amplitudes. Fig. 4 illustrates some general features

ot the equal pump amplitude case with E l - E2 = E > Es. Although y : Im w is

equal to the single pump growth rate for most values of w 2 , it vanishes when

v1 + v 2 = 0 or v, ± v 2 = 2 and it is enhanced slightly when V2 = v, - 2/N,

where N is an integer, or when v2 
= 0 (corresponding to the OTSI driven by the

second pump). As we explain in more detail in Sec. IV, these results are

*: representative of cases where the parametric decay instability tends to

dominate the behavior but is modified by the Mathieu-like effects. (Further

details concerning the results shown in Fig. 4 and in the other figures

mentioned in this introductory section are given in Sec. IV.).

If wl is near, but not exactly equal to wk + 92k (vl = 1) and El is below

the single pump threshold Es corresponding to this value of wl, then only the

Mathieu-like effects can produce instability, as illustrated in Fig. 5a, 5b,

and 5c where E = El = E2 is successively increased, but remains below Es . In

Fig. 5d, where E exceeds Es, one sees a combination of the two effects: the

single pump decay mechanism dominates for V2 far from -1, while the

Mathieu-like effects give enhanced growth near V2 = -1 and zero growth for

finite intervals of v2 above and below -1.

For unequal amplitudes, there is a complicated interplay between the

Mathieu and decay mechanisms, the resulting behavior depending on the ratio

E2 /E1 and also the ratio EI/E s . If El < Es, the decay instability does not

occur (unless v2 1) but the Mathieu instability appears, as illustrated in

7a
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Fig. 6a , the growth rate at first increasing as E2 increases (Fig. 6b), and

eventually decreasing (Fig. 6c). If E1 is well above E., the second pump may

simply modify the decay instability growth rate, as shown in Fig. 7a (details

in Sec. IV) for E2 = El/2, or it may, for larger E2 , actually suppress the

growth rate entirely over a finite interval of V2 between the Mathieu and

decay instability regions as in Fig. 7b.

If, instead of fixing W1 and varying w2 we keep W2 constant and vary wl,

we observe a similar interaction of the two instability mechanisms as shown in

Fig. 8. In general a mixture of the two mechanisms is most likely to occur

when V1 
= 1, maximizing the growth rate of the decay instability and,

simultaneously v 2 
= -1 so that v1 - v 2 = v = 2 which corresponds to the

strongest Mathieu-like instability. Most of our attention has been focused on

this "mixed regime".

Since the parameter space (El, E2 , wl, w2 ) is four dimensional, surveying

it is greatly facilitated by having an approximate solution of the dispersion

equation. Judicious truncation of the infinite determinant yields a simple

approximate dispersion equation (a biquadratic in w) which gives close

agreement with the exact results and also provides a simple means of

understanding the propeties of the solution of the exact dispersion relation

displayed in Figs. 5 through 8. In addition, this approximate dispersion

relation can be used to determine the boundaries of the stable and unstable

regions in the (El, E2 , wl, w 2) space as illustrated in Fig. 3 for

two-dimensional cross sections (E2 vs. v2 for fixed El, vl; E1 vs. V1 for

fixed E2 , Y2; E2 vs. V, for fixed El and V2 ). Although this approximation can

be strictly justified only when v i =-v2 1, it proves to be valid, in fact,

over a fairly broad range of parameter space, as illustrated in Fig. 9
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As an alternative to the Laplace transform approach, we have also solved

the differential equations in the time domain, using numerical integration, a

procedure which avoids the various approximations used in solving the

dispersion relation. Taking the Fourier transform of the solutions for ni(t)

and ne(t) then gives directly the "line shapes" ni(w) and ne(W) which would be

observed experimentally if the nonlinear saturation mechanism were independent

of frequency. Although these quantities can also be calculated from the

solutions of the Laplace transformed problem, that approach would give

spectral peaks corresponding to all roots of the dispersion equation, growing,

decaying, or stable, whereas in the time domain calculation (and in the

experimental situation) the growing waves dominate. The time domain solutions

also show clearly the modulational effects which result from the occurrence of

two unstable roots of the dispersion equation.

The theoretical model used is presented in Sec. I, together with a

derivation of the differential equation for ni(k, t) and a discussion of its

similarity to the Mathieu equation. An exact solution of the frequency domain

equations is given in Sec.Il[, where we also show that a judicious truncation

of the infinite determinant leads to simple expressions for the frequencies

and growth rates and for the boundaries of the stable and unstable regions in

parameter space. The results of these numerical calculations and a

discussion of the various features are presented in Sec. IV. Section V gives

the solutions in the time domain for both growing and stable waves.

Conclusions are presented in Sec. VI.

...........
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II. MODEL EQUATIONS AND DISPERSION RELATION

We consider a uniform, unmagnetized ion-electron plasma with a uniform

"pump" electric field:

EO(t) = El coswit + E7 cosw 2t (1)

*' Pump depletion is neglected, so EI and E2 are constant; .E and L are assumed

parallel; and the pump frequencies wj(j = 1, 2) are near the electron plasma

frequency wp. Since we are interested in growth rates well above threshold,

wave damping is neglected.

The fluid equations, for each species, a = e,i,

+ V (n V 0 (2)
at aO

a + v• VVa + Vpa/nama = qaE/ma  (3)

are linearized about the oscillating motion due to E.

n. = no + nl,, P. = Poa + Pla' La =-oa + l.t' yoa q0Eo/ma

This gives

la + 2(v,,aV)tl + (10 (X.V)nlc = V2 pl/m. - (qa/ma)noaV*(E - _E) (4)

if terms of order v9a are neglected.

Using Poisson's equation; neglecting the zeroth order ion velocity (voi)

since the ions do not respond to the high frequency field; setting Ti = 0

(i.e., taking the limit of large Te/Ti); Fourier analyzing in space; and sep-
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arating the electron density into high frequency (w of order wp) and low fre-

quency parts, ne = neh + net, we obtain

2neh + wk neh = -ik (v 0 net) (0)

2
Wpe (net - ni) + k2 Te net/m = ik (vo neh)t (6)

•- 2 2
ni + pn = pi net (7)

Here we have used Pe =f neT with a = 3 for the high frequency and a = 1 for

2 2 2the low frequency equation. Also, we set me = m, mi = M, wk = wpe + 3k Te/m

and neglect terms of order m/M. Inserting (6) into (7) and approximating

2 2 2 2 2 22 2
Wpi 11 - Wpe/(wpe + k Te/M)] k Te/M = k cs  il we get

2
ni + ik ni = -(ike/M)(Eoneh)l (8)

2neh + Wk neh = (ike/m)(Eoni) (9)

Note that the right hand side of (8) corresponds to the usual ponderomotive

force. Finally, a modulational representation

neh = f+(t) exp(-iwkt) + f_(t) exp(iwkt) (10)

where f+ are slowly varying functions, li+/f+I << wk, gives the

equations:

2n
a + n = - (ix/2)tf_(T)A(T) + f+(T)A*(T)] (11)

aT2

af+ = - (XM/16m)1/2 niA (12)

aT

a.f- = (XM/16m) 1/2 njA* (13)

aT

i _ _ _ __ _ _ _
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where

22
A A Aj exp (-iVjT), j= (ekEj/mwp2),

j=1

Vj = (wj-wk)/ak, X = (kD/k)2 , and T =ilk

The remainder of the paper is concerned with the properties of the solutions

*of (11) through (13). Of course, these equations are only valid for small Xj

since we have dropped terms of order vo2.

Before discussing the solution of (11) through (13), we note that solving

(12) and (13) for f± and substituting the result into ti" o.deromotive force

expression on the right side of (10) gives terms of the .!ral form A A* ni .

(The actual analysis, given later in this section, actu involves differen-

tiating (10) to obtain a sixth order equation for ni; the approximate discus-

sion in this paragraph is only meant to illuminate the physics involved.) If

there is only a single pump, A A is constant so the equation for ni has con-

stant coefficients; the only effect is to change the eigenfrequency from

w I to a new value which, for pump amplitudes above the decay or OTSI

thresholds, becomes complex. However, with two pumps, A A* contains also

oscillating terms of frequency V = V1 - V2 and it is this oscillating pondero-

motive force term in the ion density equation of motion which is responsible

for the new effects arising with two pumps.

A direct method of solving these equations is to use the Laplace trans-

form

ni(M) f dT ni(T)exp(tWT)
0

(where w is measuired in units of f k) which leads to the set of coupled equa-

tions

........ I.i l .
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Y-()ni(w-v) + X(w)ni(w) + Y+(w)ni(tw+v) = I(w) (14)

with

2
X(w) =w21 + I gj 2 vj /(w2-vj2 )

j=l

Y¥(W) = (vl+v2 )gg 2  (15)
2(w±v 1 )(wv 2 )

2 1/22

gj 2 -X (MX/16m) Xj

Eq. (14) also follows directly from Eq. (25) of Arnush et al. derived from

the Vlasov equation, provided we take the fluid limit for the e(k, W) in their

equation. The right hand side of (14) involves the initial conditions on

ni(T) and its derivatives, but we can simply set it equal to zero in finding

the dispersion relation. Thus, vanishing of the determinant D of the coupled

equations (14)

Y_ X Y+
(0) (0) (0)

D =det Y_ X Y+0 (16)

(1) (1) (1)
Y_ X Y+

0
yields the dispersion relation, where X(n) X(w+nw) and similarly for yz(n) .

(Note that the matrix of eq. (16) is tridiagonal.)

Before discussing the solution of (16) we examine the Mathieu-like equa-

tion derived from the system (11) through (13). Differentiating (11) twice

and (12) and (13) once allows us to eliminate f± and obtain a fourth order

---



equattion for ni

(4) (1) (3) (2) (1) (1)
S nt - S n1  + (S+H) nf - S nj + (CS 2 +H) ni = 0 (17)

1/2
where C = (Mx/m) (X/8), the upper script (j) indicates the jth derivative

with respect to T and S and H are periodic functions of VT = (Vl-V2)t:

S = 2[ Z vj A 2 + AIL2(Vl-v2)cOSVT]

H = 2["vj 3 A 2 + A1 A2 vIv(Vl+V2 )cosvTJ

Because of the S2 term in the coefficient of ni , the Laplace transform of

this equation couples ni(w) not only to ni(wtv) but also to ni(w+2v), i.e.

we get a 5 term recursion relation rather than (14). For this reason, it is

more convenient to work instead with a sixth order equation for ni whose

coefficients involve only cosvT and sinvT but not the harmonics of v. This

equation can be obtained by operating on (11) with the two operators

Lj = (d/dT)2 + vj 2  j = 1, 2 (18)

and using Eqs. (12) and (13) to simplify the terms on the right side. The

result is

[LlL 2 L + (gl2vlL2 + g2
2V2 Li)I ni =

(19)

-(vl+v2) (912) IL2- L +{exp(iVT)n } + L 2+ L -{exp(-iVt)n }

where

L = (d/dT)2 + I Lj± = (d/dT ± ivj) (20)

Of course, the Laplace transform of Eq. (19) gives just Eq. (14).

Equation (19) is an interesting generalizaton of the Mathieu equation,

which we can write as



a . .11.. .. t a a , I I , i , i

a2n + + g2n cosvT = 0 (21)
aT 2

Indeed, the Laplace transform of (21) gives a system of equations identical to

(14) but with X, Y+ replaced by

R(W) = w-

(22)

(W) - g 2 /2

and an analysis of that system leads to the usual Mathieu stability diagram.

A comparison of (19) and (21) is instructive. If the right side of (21), i.e.

the part with periodic coefficients, vanishes, the dispersion equation reduces

to X(w) = 0, which has only the stable solutions w = ±1. On the other hand,

even if the right hand side of Eq. (19), i.e., the part with periodic coeffi-

cients, vanishes, the resulting dispersion equation (14), X(w) = 0, has both

stable and unstable roots. Indeed, with g2 = 0 (which makes the right side of

(19) vanish) X(w) = 0 is just the usual dispersion for single ptump parametric

instabilities

(w2-1)(W 2-v 1
2 ) + g,2v, = 0 (23)

This has unstable roots for

912 > (v1
2 -1)2/4vl or 0 < -V I < g1

2  (24)

corresponding to the parametric decay and the OTSI, respectively. More gener-

ally, X(w) = 0 has unstable solutions for given vI, V2 if gl exceeds certain

threshold levels. This corresponds to one mechanism for instability, which

may be considered as a straightforward extension of the usual parametric in-
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stabilities (decay and OTSI), and is quite different from the situation in the

ordinary Mathien equation, where there is no instability in absence of the

term with a periodic coefficient.

The second (Mathieu-like) mechanism is evident when gl is below the

threshold for instabilities arising from X(w) = 0, since Eq. (19) for g 2 * 0

can still have instabilities due to the terms on the right hand side with

periodic coefficients. This instability mechanism is clearly analogous to

that associated with the Mathieu equation, where instabilities arise only from

the g 2 term in (21). In general, for arbitrary gl and g2 we have the presence

of both instability mechanisms.
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[[. ANALYSIS OF THE DISPERSION EQUATION

In this section we solve the dispersion equation (15) using Hill's meth-

od. We also discuss an approximation which provides some physical insight and

which proves to be quite accurate in the parameter regime of greatest inter-

est. The approximation is based on an expansion in the quantity g = (gg 2 )1/2

which we treat as a small parameter.

For arbitrary g we define a new determinant D obtained by dividing D by

its diagonal elements

OD (n)
D(w) = D(w) R X (w)

n= -W

D~)EW 1 W (25)

(1) (1)

W I W
- +

where

(n) (n) (n)
W = Y ()I/X (M)

is of order g 2 . If g is small, we can expand D in powers of g:

® (n) (n+l) 6
D() = I + W+ (t) W (W) + 0(g) (26)

n =...

In the limit g - 0, 1 = I but D can still vanish, namely if w is a root of

(n)
X (w). For later use we define the quantities rt, i = 1 to 6, as the roots

of X(w), for arbitrary gl and g2 ,

.. . ... ,. " .... .-----
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X(ri) = r1 2 - I + gj 2 vj(r, 2 -vj2)- = 1 0 (27)

In general, the roots ri have no simple physical significance, but we note the

following properties. If gl * 0 and g2 = g = 0, then Eq. (27) is a biquadrat-

ic in w whose roots give the usual single pump parametric instabilities as

illustrated in Fig. I for gl = .346. (The points A, P, M shown in Fig. I

are used later in the discussion of Fig. 5.). In the stable region

Iv1 -11 > gl there are two real roots, the ion acotistic mode with W t- 1,

and what we may call the pump idler mode, with w = v1 . If g, and 92 are both

non-zero, Eq.(27) is a cubic in w2 whose roots are, for small gj, close to

W 2 = I (iormal ion acoustic modes, present even if gj + 0) and to 22 = W12

and w2 = w2
2 (pump modes or idlers, which have no physical significance in the

limit gj + 0).

We now consider the roots of 5(w) for small g. Since the second term in

(n)
D is of order g4 , D can vanish only if one or more of the X (w) is small,

i.e. if (w + nv) is near 1, corresponding to an ion acoustic resonance. Of

particular interest is the case when two of the X(n) vanish simultaneously,

which can happen, with v * 0, if, for two integers nl, and n2 ,

w + niv w + n 2v -1 (28)

i.e. if

v 2/N (29)

where N is an integer. Of special interest is the case of "double resonance"

where one of the terms In D involves the product of two large W factors, e.g.

when

W W + - 1 (30)

which requires V = 2, N = 1. The most interesting results are obtained in

this case, which can be understood on physical grounds as follows. From the

differential equation (19) we see that the ions are driven by a ponderomotive
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force of frequency v, so a low frequency wave at w gives rise to another, at fre-

quency w-v. Both waves can be normal modes if w = 1, v 2 so that w -v -1,

giving the condition of "double resonance". For N > 1 this double reso-

nance cannot occur so the effects of the second pump are less pronounced.

However, the case N = 2, v = I is of some interest. A wave at w 1 then

gives rise, through the ponderomotive force, to a wave at w = 1-v 0, and

while this is not a normal mode, it does correspond to an OTSI mode. The

thresholds for this case are discussed in Arnush et al.

Having seen where the most interesting effects are likely to occur, we

consider the exact solution of the dispersion equation (15), i.e. without

assuming g small. The determinant D(u) defined by Eq. (25) has the following

properties:

a) D(w + v) = 5(w)

(n)
b) Lim D(w) = I since lim W (w) = 0

.c) D( u) =.D(-u) =D*"*)

(n) (n)
Since X Mu) vanishes at w = ri = ri + nv where ri are the 6 roots of X(u),

(n)
D(u) has poles at ri . These will be simple poles provided we avoid the

special v values where ri - rj = pv for some integer p. Then the function

CO 00(n) -1
K(w) - D(u) - ' bi,n(w-ri ) ) (31)

1=l n=-

- (n)
where bi,n is the residue of D at ri  , will be analytic in the whole w plane

and since K + 1 as u + -, we have K = 1. The periodicity of B implies that
(n) (m)

the residues at ri and ri must be the same, i.e. that bin = bi indepen-

dent of n. Finally,

WOL
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(n) -1 -1
X (w-ri ) = , v-l[n-(w-ri)/vl = (w/v)cot[w(w-ri)/l (32)

so
6

5(w) = I + . (bi7r/v) cot[7(w-ri)/vJ (33)
1=1

The symmetry of both D and X under w + -w means that if we arrange the roots

ri so that ri+3 = -ri, i = 1,2,3, then bi+ 3 = -bi and the dispersion relation

takes the form
3

D(w) = I + (bi i/v)(cot[ir(w-ri)/vJ - cot[(w+ri)/v]} = 0 (34)
i=l1

Since (34) gives the dependence of D on w in explicit form, it is easy to de-

termine the roots of D once the bi are known as functions of v. Note that the

method fails when v =0 since the single poles ri(n) converge into a single

point giving rise to an essential singularity. Therefore the neighborhood of

v = 0 is excluded in our numerical calculations. However, v = 0 implies that

both pumps have the same frequency and the corresponding growth rate is expec-

ted to be that of a single coherent pump whose amplitude is the sum of the two

pump amplitudes.

The ri's are poles of D, so the residues, bi, are given by

b i = lim ()(-r i )  (35)
w r i

These infinite determinants can conveniently be evaluated using iteration:

Dn+I ann+lan+l (

Dn -an+1,n+1 - 7(Dn/Do_) (36)

where Dn is the approximate value of D obtained from an n x n truncation and

an+1,n+l, an,n+l, an+l,n are the elements of the (n+l)th row and column. Al-

. . .. --- - i i i i i II " - :' I . . ...
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though some of the an,m are singular at w = r1 due to the vanishing of X(w)

factors which appear in the denominator, (w-ri)aj,m(W) is always I inlte.

The iteration scheme converges fairly well; typically, for values of V bigger

than 0.5, 10 iterations suffice to give an accuracy of 0.1%.

The roots of D obtained by this procedure are plotted as functions of the

parameters Vl, V2, etc. as discussed, with illustrative examples, in Sec.

IV. To understand the considerable structure which results, the following

approximate treatment of the double resonance case proves helpful. For

v 2, w I we have, to order g4 , keeping only the largest resonant terms,

D I + W+ (W-v) W (W) = I + Y+(W-V) Y_(w)/X(w-v) X(W) = 0 (37)

This equation, which is equivalent to approximating D by a 2 x 2 determinant,

gives an eighth degree polynomial in w, when rationalized, but it can be re-

duced to a biquadratic in the limit v= -V 2  1. Since

X(w) = (w2-1) + g,2 /2(w-vl) -922/2(m+v2 )

X(w-v) -(-v) 2 
- 1} - g1

2/2(w+v 2 ) + g2
2 /2(w-vl )

Y+(w-v) = Y() = (v1+v2)(g1g2)/2(w-vj)(w +v2),

the change of variable

w - v/2 + y (38)

gives a cubic in y2 ,

(y2-d2) (y2-a2) (y2-b2)+(g 1 2+922)b(y2+ad)-(g 2-92 2)vy2-(l/4) (g 2-92(2) 2 =0

. (39)

. W--MMMMW-
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where a (6 1 - 62)/2, b = (61 + 62)/2, 6 1 Vl - I and 62 = V2 + I are small

quantities in the double resonance regime and d = v/2 + I, with d = 2 in that

regime. If the growth rate y and the shift in the normal mode frequency,

(Rew-i), are much smaller than 1, as is the case for small amplitude pumps,

then 1y1 2 << d2 for v 2 and equation (39) becomes

y 4-2Ay 2 + B = 0 (40)

where

A= {a2+b2+(g 2 +g 2 )b/d 2 -(g 2-g 2 )v/d2 }
2 1 2 1 2

(41)

B = a2b2 + (g1
2-g2

2 )2/4d2 - (g1
2+g2

2 )ab/d

From (38) and (40) we have

W =v/2 + [A + (A2-B)I/211/2 (42)

as a convenient closed form approximation for the roots of D(w) which is valid

for v I = -v 2 = I and small values of gj. (Note that (42) gives four roots

since each square root can have either a positive or negative sign.)

The rather complicated dependence of the growth rate on the pump fre-

quencies and amplitudes as determined from the numerical solution of (34) can

be understood in a fairly simple way from an examination of (41) and (42),

which actually provide a good approximation even when 61 and 62 are not small.

From (42) we can see that there are two disjoint conditions for instability
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a) B < 0 (43)

b) B > A2  (44)

and the boundaries between the stable and unstable regions of parameter space

are then determined by the locii B = 0 and B = A2, as shown in Fig. 2. We

first note that the number of unstable roots of (42) varies from 0 to 2

according to the signs of A, B and A2 - B. The various possibilities are sum-

marized in Fig. 2.

We may say that region a) represents the generalized Mathieu instability

since Re w is locked to one half of the (ponderomotive force) driving fre-

quency, v/2, just as in the lowest unstable mode of the usual Mathieu equa-

tion. Similarly, we may consider region b) as the generalization of the

single pump decay instability since in the limit g2 + 0, V2 + -1, we have

B = A2 and (42) reduces to the usual single pump expression

= v/2 ± A1/2 + vI ± [(L-v) 2-gl 2Vl] 1}/2, (45)

1/2

* unstable if g > gs = (1-V1 )vl •

The mapping of the stability boundaries on the physical space of the

parameters can be obtained by examining the surfaces B = 0 and B = A2 which

characterize the different regions of Fig. 2. Since there are four indepen-

dent parameters (vi, v2, g, and g2) it is convenient to fix two of these and

plot the curves B = 0 and B = A2 in the plane of the remaining two parameters.

Examples of such plots are shown in Fig. 3 with the respective regions of

Fig. 2 identified.
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IV. SOLUTIONS OF THE DISPERSION RELATION

In this section we analyze the roots of (34) as functions of the parame-

ters vl, v2 , E l and E2 . Numerical calculations of both growth rates and fre-

quencies, are presented and the approximate form of the dispersion equation

(42) is used to analyze the resulting structure.

The new effects resulting form the presence of the second pump are most

evident at resonance, i.e., when one of the pump frequencies differs from the

Bohm-Gross frequency by approximately 12k, the ion acoustic frequency. We

shall therefore consider two cases:

i) v, = 1, v2 arbitrary

ii) V2 = -1, vI arbitrary

i) Vi 1

We begin with the case of equal amplitude pumps gl = g2 = g, with g well

above the single pump decay instability threshold, g. = (vl-l)vl-I/2 = 61. Of

the various roots of (34) we select the ion acoustic wave, i.e., the one with

y = Im w > 0 which has Re w = I (in units of k). In Fig. 4 we show y and

Re w as a function of V 2 for v1 = L.1 and g, = 92 = g = 0.346. (The region

V2 = v, is excluded from the plot for the reason stated in Sec. II[. Note

that the growth rate increases as we approach V2=Vl, consistent with

our expectation that y+2ys at that point).

For most values of v2 , we see that y = s = [vl(g2-g)I2, the single

pump decay instability growth rate, i.e., the second pump has little effect.

The enhancement of y when v2 
= 0 is not unexpected, since the second pump

could then produce the oscillating two stream instabiltiy (OTSI) even in the

absence of the first pump. Actually, close inspection of Fig. 4 shows that y
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is enhanced for both positive and negative values of v2 , whereas the usual

OTSI instability arises only for a pump frequency below the Bohm-Gross fre-

quency. However, the most striking feature of Fig. 4 is the total supression

of the instability for v2 = -v1 and V2 = ±(2-vl), arising from the interaction

between the two mechanisms, parametric and Mathieu-like, discussed in Sec. I.

An understanding of the structure of Fig. 4 can be obtained from the ap-

proximate solution of (34) given by (42). For equal pump powers not too far

above threshold, A is positive, since 61, 62 and g, g 2 = g are all small

quantities of the same order and hence the (a2 + b 2 ) term in A dominates.

Therefore, condition (43) for the generalized Mathieu instability becomes,

with d = 2,

22

(ab) 2 - gab > 0 (46)

which is equivalent to

0 < 612 - 622 < 4g 2  (47)

In Fig. 4, g > 61 so the right half of (47) is automatically satisfied. The

condition 1621 < 161I just corresponds to the region between the nulls marked

1 and 2 in Fig. 4. In this region, we find that, as expected from (42), Re w

is locked to v/2. At the ends of that interval we have 61 = ±62, i.e.,

v2  V - I  or b = 0

(48)

v 1 - v 2 = 2 or a = 0

Since (48) is independent of the pump amplitude, these are stable

points of the system and can not be excited even if the pump amplitude is in-

creased (subject, of course, to the small pimp amplitude assumption which un-
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dernies our whole analysis).

We note that the nulls at t and 2 in Fig. 4 correspond to a certain

symmetry in the frequency spectrum. For V2 = -VI, the pumps are symmetrical-

ly placed above and below the Bohm-Gross frequency, resulting in a cancella-

tion similar to that which occurs if a harmonic oscillator is driven by equal

amplitude pumps symmetrically located above and below its resonant frequency.

5
The existence of this null has also been noted by Fejer et al. For

VI - v2 = 2, corresponding to the null at 2, the symmetry manifests itself

at low frequencies, as follows. A low frequency fluctuation, at frequency w,

beating with the pump at w1 gives rise to a sideband at wl - w, the interac-

tion being strongest when the sideband is resonant, i.e., when wl - w = wk or

w = v i. The sideband at wl - w, beating with the second pump, produces a low

frequency oscillation at 1- w) - w2 = V - w = v - V1 = -V 2 . Double reso-

nance occurs when both of the low frequency signals are near the ion acoustic

frequency, Slk, i.e. V I  -V 2  1-. When v 1 - V2 = 2, we have v, -1 = - V2),

i.e., the two low frequency signals are located symmetrically above and below

Qk and there is a cancellation. This same situation arises when both pumps

are above the Bohm-Gross frequency, V I = v 2 = I and v 1 + V2 = 2 or

v- = I - V2 . The resulting cancellation accounts for the null denoted as

3 in Fig. 4.

While the nulls in Fig. 4 arise from these symmetries, the first two be-

ing associated with the double resonance condition N = 1, v = 2, the slight

enhancements in y correspond to other values of N. Those for N = 2 and N = -1

are clearly visible (at v2 = VI - I and v 2 = v1 + 2, respectively) and the

N = 3 peak (at v2 = vl-2/3) is barely visible on the scale used for display.

Higher order interactions (N > 3 and N < -1) would appear for larger values of
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g. As a final comment on this equal amplitude case, we note that if the first

pump is exactly on resonance, v I = 1, then a = -b; the two conditions (48) are

the same; the two nulls at 1 and 2 coalesce; and there is no Mathieu-like be-

havior.

In discussing other values of the parameters, we shall concentrate on t:e

N = I (double resonance) case, where the most striking effects occur. Also,

we will plot Re w and y for all of the four modes with Re w of order 1. In

generaL, we plot only the positive y values but, of course, for each root of

the dispersion equation with y > 0 there is another with imaginary part equal

to -y. If we keep the pump amplitudes equal, g1 = g2 = g but put g below the

parametric instability threshold g. for the first pump acting alone, we obtain

the results shown in Figs. 5a, 5b and 5c. In Fig. 5a, g < 6 1/2 and it follows

from (47) that the range of instability 62 is not the whole interval

-61 < 62 < 61 as in Fig.4 but instead only the portion

(612 - 4g2)1/2 C 16 2 1  61  (49)

This corresponds to the two growth regions in Fig. 5a. In Figs. 5b and 5c,

61/2 < g < 61. In this case, the instability region for 62 expands to the

whole interval (-61, 6 1). Finally, in Fig. 5d, g > 6I, we obtain the Mathieu

instability on the interval (-61, 61) and the decay instability when V2 is far

from -I. The behavior of both y and Re w in these figures is consistent with

the characterization of the roots of (40) given in Fig. 2. In Fig. 5a as we

move from left to right we are first In region IV of Fig. 2, then in regions

1, IV, I and IV. In Figs. 5b and 5c we have that the central feature corres-

ponds to region I and the sides to region IV. in Fig. 5d, again moving from

left to right we go through regions I1, IV, 1, IV and Ill.
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An alternative view of the structure of Fig. 5 is as follows. For Figs.

5a, 5b and 5c where gl < gs (for a given value of v|) there would he, in

absence of the second pump, two stable modes, the ion acoustic, with W - I

(point A in Fig. 1) and the "pump" mode, with to = v I (point P in Fig. 1). The

ponderomotive force with frequency v may interact with either of these, insta-

bility occuring if the beat wave resulting from this interaction is also

resonant. This occurs, for example, when v - V, n! Vi, i.e. for V2 = -Vl, cor-

responding to the left hand bump in Fig. 5a. Similarly, v - I = I or

V? = v i - 2 corresponds to the right hand bump. As g increases, point M in

Fig. I moves closer to v, (since the width of the instability region is pro-

portional to g) and the ion acoustic and pump mode can be coupled through the

action of the ponderomotive force, resulting in the y variation shown in

Figs. 5b and 5c. Finally, for g > gs point M has moved to the right of vl,

giving growth for most values of v2 save for the interval where the Mathieu

mechanism dominates and is stabilizing (Fig. 5d).

For unequal pump amplitudes, we find similar dependences of the roots of

(34). If the amplitude of the first pump is below the single pump instability

threshold, gl < 61, we obtain the results shown in Fig. 6 for

g, = .075. For g2 = gl/3 (Fig. 6a), there are two disjoint regions of growth

within the interval 1621 < i61 whereas for larger g2 these merge into a

single region (Figs. bb and 6c). To understand this structure, we note that

since gl < 61, we have A > 0 and the condition for the Mathieu instability is

just (43), which can be written in the form

2 2 22 2 g)

61 -(gl + g 2 ) < 62 < 61 - (gl - 9 2 )2  (50)

If g 2
< 61 - g 1 , (50) predicts two disjoint instability regions, as in
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Fig. 6a. If 61 - g 1 < g 2 
< 6 1 + gi, then the left half of (50) is automati-

catty satisfied and there is only one region of instability, whose boundaries

are within the interval 1621 < 1611, as in Figs. 6b and 6c. If g2 > 6 1 + gl,

then (50) cannot he satisfied and there is no Mathieu instability, i.e., we

have crossed from region I in Fig. 2 to region IV. The qualitative view given

previously for Fig. 5 also applies to the conditions of Fig. 6.

If, instead, the first pump amplitude is above the single pump decay

threshold, g1 > 61, then A may be either positive or negative. In Fig. 7a,

where g1 = 1.7 61 and g 2 
= gl/2 we pass from region I of Fig. 2, when V2 is

near -1, through region I (A < 0) and eventually to region III, at either

side of v2=-l. Although the decay instability growth rate is somewhat modified

by the presence of the second pump, g2/g 1 is so small that there is no region

of v2 where the instability is completely suppressed. If g 2 > g1 , then it

follows directly from (41) that A > 0 and instability can occur only in re-

gions I and Ill of Fig. 2. This situation is illustrated in Fig. 7b, where

gl = 1.7 61 as in Fig. 7a but g2 = 1.1 gl. For these values, (50) predicts a

single instability region around v2 = -1, as seen in Fig. 7b, since

g2 < 61 + gl. As V2 decreases, we pass from region I through the stable re-

gion IV and eventually come to the decay instability (region III) near V2 = -1.5

(We pass through these same regions as V2 increases from -1 to -0.5).

We see from (50) that as the second pump amplitude increases, we eventu-

ally supress the Mathieu instability since for g2 > g1 + 61 the condition B < 0

cannot be satisfied. Thus, as g2 increases from 0 to gl + 61, the maximum

growth rate for the Mathieu instability (which occurs at 62 = 0) for given v,

and gl, increases, reaches an optimum, and then decreases, as shown in Fig. 6.

it) v2  -1

We consider here only the regime v| > 0, i.e., we study the modification
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Of the deray instability due to the first pump. Some typical results are

plotted in Fig. 8. For comparison the single pump case (g2 = 0) is shown in

Fig. 1. In Figs. 8a and 8b the pump amplitudes are equal, g1 - 92 = g = .346

so A > 0 and instability can arise only from regions I and IlI of Fig. 2. For

v2 -1, we have

22 2

B = 61 2(61 - 4g )/16 (51)

hence the Mathieu instability occurs over the interval 1611 < 2g, as shown in

Fig. 8a. The vanishing of the growth rate at v= I is a consequence of the

symmetrical location of the pumps above and below the Bohm-Gross frequency, as

discussed earlier. When V2 is displaced from -1, e.g., v2 = -1.2 as in

Fig. 8b, we have

B = (612 - 62 2)(612 - 622 - 4g2 )/16 (52)

Thus the Mathieu instability (associated with B < 0) occurs for

2 2 2 2
6 1 - 2g < 62 < 6 1  (53)

This corresponds to the right-hand and left-hand bumps in y in Fig. 8b. Out-

side of the interval (53) the Mathieu instability does not occur, but between

the two bumps B becomes larger than A2 and we encounter the decay instability

(region Ill of Fig. 2) as evidenced by the central hump in Fig. 8b.

For different pump amplitudes, we observe various combinations of the

Mathieu and decay instabilities. Fig. 8c shows a case where A > 0 (since

g?2 > g1 ) and we move from region TV, for v, = 0, to regions I, IV, III, IV, I

and IV as vl increases up to 2. For g2 < 91, as in Fig. 8d, we cannot predict

the sign of A from simple arguments. In general it will depend on the values
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of gi, g2, and v1 , hut for the parameters of Fig. 8d, it I; 'ear, from the

behavior of both y and Re w, that as vI increases from 0 to 2 we pass, succes-

sively, through regions IV, 1, 11, [1[, [1, 1 and IV.

From Fig. 3 it is easy to follow the path through the stability plane

corresponding to the curves of Figs. 5 through 8. For example, Fig. 8d cor-

responds to the dotted horizontal line at g 2 = g1/2 shown in Fig. 3d.

in all of the discussions of this section, we have used the approximate

solution (42) of the dispersion equation to explain the results obtained nu-

merically from the exact equation (34). This is justified by the close agree-

ment of the exact and approximate solutions when 61 and 62 are not too large.

This agreement is illustrated for typical values of the parameters in Fig. 9,

where the solid line corresponds to the the solutions of the exact dispersion

(34) and the dotted line to the approximation (42). Note that in this figure

we have plotted the growth rates for all roots, i.e., those with y < 0 are also

included.

9 -
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V. TIME DOMAIN BEHAVIOR

Although the stability properties of our basic equations (10) through

(12) are fully described by the frequency domain analysis presented in the

previous two sections, additional physical insight can be obtained by examin-

ing the time domain solutions of these equations. We use a fourth order

6Runge-Kutta technique to solve the fourth order system (10) through (12),

taking as initial condition a standing ion acoustic wave [f+(O) = f_(O) = 0;

hi(O) = 1; ni(0) 01. The integration is done using a step size At = 0.4

(in units of Qk - ) for 256 steps. The result is unchanged when At is taken to

be 0.1. We also calculated frequency spectra from these solutions using a fast
4 7

Fourier transform with 256 sample points. Insofar as the nonlinear mechan-

isms responsible for saturation of the instability are weakly dependent on

frequency, these spectra are representative of what might be seen in an actual

experimental measurement of the frequency spectrum of the ion or electron den-

sity fluctuations. Of course, the fine details of the spectrum, e.g., the ra-

tios of the various spectral peaks depend somewhat upon the precise initial

conditions, such as the ratio of left-going and right-going ion acoustic waves

and/or Langmuir waves.
8,

Fig. 10 shows the results for a choice of parameters (vI = 1.1, v2 = -0.8

91 = 92 = .346) corresponding to a point just to the right of null 2 in

Fig. 4. Since this is in region Ill of Fig. 2, the dispersion relation pre-

dicts two modes with equal growth rate and different Re w. The beating of

these two modes causes the modulation in ni(t) shown in Fig. 1Oa. (The exist-

ence of the two modes is also apparent from the plot of jni(w)1 2 in Fig. lOc.)

The exponential growth of the two modes (following an initial transient per-

iod) is reflected in the plot of log~nil in Fig. lOb.
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In Fig. 11 we show ni(t) for parameters chosen to correspond to the nulls

1, 2 and 3 in Fig. 4. In each case there is a modulation but, as expected, no

net growth. When VI = -v2 (as in Fig. Ila) we note that (11) through (13)

reduce to

a(f+ + f_)/DT = 0
(54)

a 2ni/T2 + ni = -i(x/2)[f+(O) + f_(O)JX cos VlT

from which it is obvious that ni is a superposition of oscillations at W = 1

and w = vl, resulting in the modulation seen in Fig. Ila.

In experimental observations, especially in the case of the ionosphere,

the most accessible quantity is the electron density ne(w) at high frequencies

(of order of the Bohm-Gross frequency), measured, for example, by Thomson

scattering. In Fig. 12 we show the spectral distributions Ine(i)l 2 obtained

by fast Fourier transform of the direct solutions of (10) through (12) for

equal amplitude pumps gl = 92 = .346 with v1 = 1.1 and various values of V2 .

The locations of the two pumps are indicated with dotted lines and the ampli-

tudes ine()l 2 are arbitrarily normalized to the largest value found in this

set, which occurs in Fig. 12g. Of course, the various peaks of the high fre-

quency electron density spectrum just correspond to peaks in the low frequency

ion density spectrum, which is shown, for the same parameters, in Fig. 13;

indeed it follows from (12) that

1/2
-iwf+(W) = f+(t=O) - (Mx/m) / A1 ni(w-vl) + A2 ni(W-v 2 )J/4 (55)

For v1 = I and V2 far from -1, as in Figs. 12a, 13a, the spectrum is dominated

by the single pump decay associated with the first pump. As V2 approaches -1

the spectrum becomes modified (Figs. 12b,c and 13b,c). For v2 = -1, we are

in region I of Fig. 2, so there is one unstable root for Re w > 0 (and another

S - g.
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for Re w < 0) in ni(w) and hence four (two coinciding at w = wk) for ne()

For v 2 = -0.88 (Figs. 12d, 13d) we are in region III of Fig. 2 and the two un-

stable modes (for Re w > 0) in ni(w) result in a splitting of the ne(W) peaks.

As v2 continues to increase (Figs. 12e through 12h and 13e through 13h) the

spectrtim of ne(w) again resembles the single pump decay, with various modifi-

cations in the line shape.
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V1. CONCLUSIONS AND DISCUSSION OF RESULTS

Our study of the effect of a second pump on the parametric instability

growth rate of ion acoustic and Langmuir waves is valid for long wavelength

pumps in a uniform medium, i.e. for Ln > Ap > Xw where Ln is the density gra-

dient scale length, Xp is the pump wavelength and Xw is the wavelength of the

waves excited by the parametric process.

New effects appear in the case of two pumps because, in addition to the

constant term produced by a single pump, which results in the usual parametric

instabilities, the ponderomotive force contains also an oscillating term of

frequency A = wl - w2. This gives the ion density equation a character simi-

lar to the Mathieu equation, although the differential equation arising here

is of higher order. We find that the interaction between the Mathieu type of

instability and the usual parametric decay instability (we have concentrated

here on the decay instability but similar results hold also for the OTSI) is

strongest when the condition for the decay instability (w, = Wk + Qk or

v| = 1) and the condition for the Mathieu instability (A = 21 k or v = 2), are

simultaneously satisfied, i.e., when V1 - -v 2  1 1. The interaction may be

either constructive or destructive. Constructive interference is exemplified

by the fact that even if both pump amplitudes El and E2 are below the thresh-

old Es for the single pump decay instability (in fact, even if

2 2 2E l + E2 < E, ) the Mathieu mechanism can still lead to instability, as il-

lustrated in Fig. 5a, 5b and 5c. The destructive aspect is illustrated by the

occurrence of nulls in y as a function of vI or v2 , nulls which may occur even

when E l > E., as illustrated in Fig. 4 and Fig. 7b, and which may extend over

a finite interval of V1 or v2 , as in Fig. 7b. As discussed in Sec. IV, the sta-

bilizing or destabilizing effect of the second pump does not vary monotonically
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with E2 , as illustrated in Fig. 6 for El below the single pump threshold: the

growth rate initially increases with E2 , reaches a maximum and then decreases,

eventually vanishing for sufficiently large E2. If, as is sometimes the case,

one wishes to eliminate parametric instabilities, it appears that multiple

pumps could be used if their parameters are appropriately chosen. Note that

the suppression of the instability observed here occurs with coherent (fixed

phase) pumps and hence differs from the use of broadband, randomly phased

8
pumps

It is also important to note the strong dependence of the growth rate on

the parameters. For example Figs. 7a and 9c correspond to the same value of

the parameters except for a slight difference in the value of vI. It is ob-

served that in Fig. 7a the immediate neighborhood of v2 = -1 corresponds to

region I of Fig. 2 (i.e., only one complex root with y > 0), followed by re-

gion III after a brief transition to region 2 as 1621 increases, whereas the

loop in y around V2 = -1 seen in Fig. 9c corresponds to region II followed by

region III as 1621 increases.

The solutions of the dispersion equation discussed in section IV were ob-

tained by solving the infinite determinant using Hill's method. However, in

the parameter regime where interesting effects appear, an excellent approxima-

tion is obtained by using a 2 x 2 truncation of that determinant.

Direct solution of the problem in the time domain is used to

corroborate the frequency domain results and shows the modulational effects

associated with multiple roots of the dispersion equation. Moreover, the

Fourier transform of the time domain solutions indicates the spectral line

shapes to be expected for the ion and electron densities, at low and high fre-

quencies, respectively. So far as the spectral lines are concerned, the lar-

' . - - - - - o
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gest effect of the second pump is to diminish their maximum amplitudes as we

approach the nulls of y, but it also results in some fine structure, e.g.

splitting of the lines, appearance of satellites, etc.

A direct extension of this work would include damping effects (colli-

sional or Landau). Inclusion of a phenomenological damping term (damping rate

re) in the fluid equations for the electrons simply replaces w by (w + ire) SO

Hill's method of solving the infinite determinantal dispersion equation is

still applicable. Preliminary calculations show no qualitative changes, aside

from the expected diminution of y. When re exceeds the ion acoustic frequency

Qk, the earlier calculationI shows that the threshold with two pumps

can be considerably lower than with a single pump and it would be interesting

to explore the behavior of the growth rates above threshold in that case. An

analysis similar to that carried out here could also be used for any of the

many parametric instabilities associated with magnetized plasmas. For appli-

cations to ionospheric plasmas, it would be important to include the effects

of density gradients; for example, each pump may give rise to its own decay

instabilities albeit at different altitudes, and these would interact with the

Mathieu type of instabilities examined here. Finally, a nonlinear treatment

of two pump excitation would give a more realistic prediction of the actual

line shapes.
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Fig. 1: Growth rate yi (upper half) and real frequency w (lower half) of the

ion acoustic and pump idler modes for the single pump excitation.

Points P, A, M are to be used in discussion of Fig. 5a.
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Fig. 2: Stability regions in the plane of the variables A and B defined by
(41). The four roots of the biquadratic equation (40) for y = w - v
have the following (harit'terlstIcs in the respective regions of the /2
A-B plane: 1) two real roots and two coil .i ,te, pirely fimagairary
roots, It) two pairs of conj uga te, porely ma, ginarv roots;, 111) two
pairs of complex conjugate roots, IV) two pairs of eqtiaI and o)ppo-

site reaL roots.
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Fig. 3: Stability regions in parameter space aIs obtained from the approxi-
mate solution (42). The shaded regions indicate the unstable z.ones
aind the Roman nuamerals correspond to the Ilahelling in Fig. 2. The
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